Compliance | LabJack


Many of our products have been tested for CE marking, which reflects FCC compliance, EMC (electromagnetic compatibility), EMI (electromagnetic interference), RF emissions, RF immunity, and the ability to survive ESD (electrostatic discharge).  Part of the CE mark is a Declaration of Conformity where we describe the standards LabJack devices are tested to meet. Our Declarations of Conformity can be found below.

All LabJack-branded products are CEREACH, RoHS2, and CFM (conflict-free minerals) compliant.


CE Declarations of Conformity:

Attached below.


Conflict Free Minerals:

Attached below is our conflict minerals (CM) policy document and our conflict minerals reporting template (CMRT).



Attached below is a document stating RoHS and REACH compliance.


Toxic Substance Control Act:

Attached below is a document stating compliance with the Toxic Substance Control Act (Code 40, Part 751).


Letter of Volatility (LoV):

Letters of volatility describe the various memory within a device, what is volatile and what is non-volatile, how information can be stored in memory, and how memory can be cleared.  Letters of volatility are attached below, and if your device is not listed contact us and we can add it.


Certificate of Conformance:

Also called a Certificate of Conformity, Certificate of Compliance, or CoC. This is a simple industry standard document stating that our products comply with our standards for quality, specifications and workmanship.  A blanket CoC is attached to this page.  If you need a different variation please contact us.  Also attached is a CoC from Electronic Innovations (EIC).


UL, CSA, or similar electrical safety standards:

All LabJack products are low voltage, therefore these electrical safety standards do not apply.  In the case of the RB12 and RB16, modules provided by other manufacturers might have a UL listing or similar.



LabJack's red enclosures:  UL 94 HB, Sabic Polycarbonate Lexan 143R, E75735.
LabJack's PCBs:  UL 94V-0, E304660 (M1 or N2).
Screw Terminals:  UL 94V-0, Thermoplastic, E245249.
Snaptrack:  UL 94V-0, PVC, E58648.
RB12/UE9 Power Jack:  UL 94V-0, PBT 4815, E59481.
USB Connector:  E59481, PBT UL 94V Rated
Pin Headers:  E53664, 30% Glass Fiber PBT


Country of Origin:

Per export definitions, the official Country of Origin for most LabJack-branded products is USA.  The only exceptions are the 2034DZ and 2034CAZ temperature probes, which are China.

All software written by LabJack also has the Country of Origin of USA.

We do not claim the phrase "Made in the USA". This special designation requires that all raw materials are mined in the USA, and that all chips and components are manufactured in the USA. That is not feasible for any electronic devices.



Export codes are assigned to everything we sell.  For example, the schedule B code for the T7 is 8471.60.1050 and applies to the entire package including the T7 itself, power supply, USB cable, Ethernet cable, screwdriver, packaging, firmware and software.  Firmware and software are part of our hardware.  We do not sell any firmware and software so these do not have their own export codes.

Schedule B / HS / HTS:
Main Devices (U3, T7, etc.):  8471.60.1050
Accessories designed for use with LJ main devices:  8473.30.0002
Sensors & Probes (LM34, EI-1022, EI-1034, EI-1050, 2034DZ, 2034CAZ):  9031.49.8000
3rd Party:  Codes provided by manufacturer

Which means license is NLR (no license required) as long as we don't export to the prohibited countries.

Prohibited Countries:
Cuba, Iran, North Korea, Sudan and Syria

Does not apply to our products


Availability Status, End of Life (EOL):

Below are the production statuses for all data acquisition (DAQ) devices ever made by LabJack:

  • U12 (2001): NRND (not recommended for new designs). No plans to discontinue. This is our oldest device, and we have newer devices that are recommended for new users. As of this writing there is no indication that any major sub-components will become unavailable.
  • UE9 (2004): LIMITED (limited availability) expected through 1Q 2022, as final production will be completed in 2021.  When those units are gone the status will be NLA (no longer available).  Many parts required to build the UE9 have been discontinued by their manufacturers. Production of the UE9 has become increasingly difficult and expensive. The T7 is a newer replacement that is superior in every way including cost.
  • U3 (2006): Active. All variations of U3-HV and U3-LV. Estimated time horizon of 2030. See Section 2.13 of the U3 Datasheet for information about older hardware variations.
  • U6 (2009): Active. All variations. Estimated time horizon of 2030.
  • T7 (2013): Active. All variations. No plans to discontinue.
  • T4 (2017): Active. All variations. No plans to discontinue.

Production status of other devices made or sold by LabJack:

End Of Life (EOL) Notice, EI-1050:
NLA (no longer available):  The EI-1050, manufactured by Electronic Innovations Corporation and sold by LabJack, has been discontinued. The Sensirion sensor it uses is no longer available.  The EI-1050 Datasheet has information about alternate devices.


Mean Time Between Failure (MTBF):

LabJack has not done official MTBF analysis or testing for any devices. LabJack devices are made of normal semiconductor components, and do not use any components with a rating in terms of limited lifetime.  It is rare for our devices to fail on their own.  Overwhelmingly, the failed devices we see have damage that can be attributed to an out-of-spec voltage or current that has been introduced to the device from some external source. This is the nature of data acquisition devices with user controlled connections spanning from communications, power, ground, and I/O.

The following link mentions a DoD document that could be used to generate an MTBF number based on statistical models:

Below is a quote from someone at a major university who needed to assign an MTBF to our products:

"Typically, for an electronic device such as yours, with off the shelf components, and with an approximate number of parts-by-count of roughly 50, I should expect an MTBF of 30K~75k hours. I'll probably utilize some figure within that range."

50k hours is about 6 years of continuous use, which we can say from experience is too low.  We would estimate that operating 100 devices continuously for 10 years would result in 10 failures not due to external forces, and our estimate for MTBF would be 500k hours.