- Datasheets
- Accessories
- CB15
- CB25
- CB37 V1.2
- CB37 V2.1
- EB37
- EI-1022
- EI-1034
- EI-1040
- EI-1050
- IDCA-10
- LJTick-CurrentShunt
- LJTick-DAC
- LJTick-DAC Testing Utility
- LJTick-DigitalOut5V
- LJTick-Divider
- LJTick-InAmp
- LJTick-InBuff
- LJTick-LVDigitalIO
- LJTick-OutBuff
- LJTick-Proto
- LJTick-RelayDriver
- LJTick-Resistance
- LJTick-VRef
- Mux80 AIN Expansion Board
- PS12DC
- RB12
- RB16
- T-Series Datasheet
- Preface: Warranty, Liability, Compliance
- 1.0 Device Overview
- 2.0 Installation
- 3.0 Communication
- 4.0 Hardware Overview
- 5.0 USB
- 6.0 Ethernet
- 7.0 WiFi (T7-Pro only)
- 8.0 LEDs
- 9.0 VS, Power Supply
- 10.0 SGND and GND
- 11.0 SPC
- 12.0 200uA and 10uA (T7 Only)
- 13.0 Digital I/O
- 13.1 Flexible I/O (T4 Only)
- 13.2 DIO Extended Features
- 13.2.1 EF Clock Source
- 13.2.2 PWM Out
- 13.2.3 PWM Out with Phase
- 13.2.4 Pulse Out
- 13.2.5 Frequency In
- 13.2.6 Pulse Width In
- 13.2.7 Line-to-Line In
- 13.2.8 High-Speed Counter
- 13.2.9 Interrupt Counter
- 13.2.10 Interrupt Counter with Debounce
- 13.2.11 Quadrature In
- 13.2.12 Interrupt Frequency In
- 13.2.13 Conditional Reset
- 13.3 I2C
- 13.4 SPI
- 13.5 SBUS
- 13.6 1-Wire
- 13.7 Asynchronous Serial
- 14.0 Analog Inputs
- 15.0 DAC
- 16.0 DB37 (T7 Only)
- 17.0 DB15
- 18.0 Internal Temp Sensor
- 19.0 RTC (T7 Only)
- 20.0 Internal Flash
- 21.0 SD Card (T7 Only)
- 22.0 OEM Versions
- 23.0 Watchdog
- 24.0 IO Config, _DEFAULT
- 25.0 Lua Scripting
- Appendix A - Specifications
- Appendix B - Drawings and CAD Models
- Appendix C - Firmware Revision History
- Appendix D - Packaging Information
- Appendix E - Software Options
- U3 Datasheet
- Preface
- 1 - Installation
- 2 - Hardware Description
- 2.1 - USB
- 2.2 - Status LED
- 2.3 - GND and SGND
- 2.4 - VS
- 2.5 - Flexible I/O (FIO/EIO)
- 2.6 - AIN
- 2.6.1 - Channel Numbers
- 2.6.2 - Converting Binary Readings to Voltages
- 2.6.3 - Typical Analog Input Connections
- 2.6.3.1 - Signal from the LabJack
- 2.6.3.2 - Unpowered Isolated Signal
- 2.6.3.3 - Signal Powered By the LabJack
- 2.6.3.4 - Signal Powered Externally
- 2.6.3.5 - Amplifying Small Signal Voltages
- 2.6.3.6 - Signal Voltages Beyond 0-2.44 Volts (and Resistance Measurement)
- 2.6.3.7 - Measuring Current (Including 4-20 mA) with a Resistive Shunt
- 2.6.3.8 - Floating/Unconnected Inputs
- 2.6.3.9 - Signal Voltages Near Ground
- 2.6.4 - Internal Temperature Sensor
- 2.7 - DAC
- 2.8 - Digital I/O
- 2.9 - Timers/Counters
- 2.9.1 - Timer Mode Descriptions
- 2.9.1.1 - PWM Output (16-Bit, Mode 0)
- 2.9.1.2 - PWM Output (8-Bit, Mode 1)
- 2.9.1.3 - Period Measurement (32-Bit, Modes 2 & 3)
- 2.9.1.4 - Duty Cycle Measurement (Mode 4)
- 2.9.1.5 - Firmware Counter Input (Mode 5)
- 2.9.1.6 - Firmware Counter Input With Debounce (Mode 6)
- 2.9.1.7 - Frequency Output (Mode 7)
- 2.9.1.8 - Quadrature Input (Mode 8)
- 2.9.1.9 - Timer Stop Input (Mode 9)
- 2.9.1.10 - System Timer Low/High Read (Modes 10 & 11)
- 2.9.1.11 - Period Measurement (16-Bit, Modes 12 & 13)
- 2.9.1.12 - Line-to-Line Measurement (Mode 14)
- 2.9.2 - Timer Operation/Performance Notes
- 2.9.1 - Timer Mode Descriptions
- 2.10 - SPC (… and SCL/SDA/SCA)
- 2.11 - DB15
- 2.12 - U3-OEM
- 2.13 - Hardware Revision Notes
- 3 - Operation
- 4 - LabJackUD High-Level Driver
- 4.1 - Overview
- 4.2 - Function Reference
- 4.2.1 - ListAll()
- 4.2.2 - OpenLabJack()
- 4.2.3 - eGet() and ePut()
- 4.2.4 - eAddGoGet()
- 4.2.5 - AddRequest()
- 4.2.6 - Go()
- 4.2.7 - GoOne()
- 4.2.8 - GetResult()
- 4.2.9 - GetFirstResult() and GetNextResult()
- 4.2.10 - DoubleToStringAddress()
- 4.2.11 - StringToDoubleAddress()
- 4.2.12 - StringToConstant()
- 4.2.13 - ErrorToString()
- 4.2.14 - GetDriverVersion()
- 4.2.15 - TCVoltsToTemp()
- 4.2.16 - ResetLabJack()
- 4.2.17 - eAIN()
- 4.2.18 - eDAC()
- 4.2.19 - eDI()
- 4.2.20 - eDO()
- 4.2.21 - eTCConfig()
- 4.2.22 - eTCValues()
- 4.3 - Example Pseudocode
- 4.3.1 - Open
- 4.3.2 - Configuration
- 4.3.3 - Analog Inputs
- 4.3.4 - Analog Outputs
- 4.3.5 - Digital I/O
- 4.3.6 - Timers & Counters
- 4.3.7 - Stream Mode
- 4.3.8 - Raw Output/Input
- 4.3.9 - Easy Functions
- 4.3.10 - SPI Serial Communication
- 4.3.11 - I²C Serial Communication
- 4.3.12 - Asynchronous Serial Communication
- 4.3.13 - Watchdog Timer
- 4.3.14 - Miscellaneous
- 4.4 - Errorcodes
- 5 - Low-level Function Reference
- 5.1 - General Protocol
- 5.2 - Low-Level Functions
- 5.2.1 - Bad Checksum
- 5.2.2 - ConfigU3
- 5.2.3 - ConfigIO
- 5.2.4 - ConfigTimerClock
- 5.2.5 - Feedback
- 5.2.5.1 - AIN: IOType = 1
- 5.2.5.2 - WaitShort: IOType=5
- 5.2.5.3 - WaitLong: IOType=6
- 5.2.5.4 - LED: IOType=9
- 5.2.5.5 - BitStateRead: IOType=10
- 5.2.5.6 - BitStateWrite: IOType=11
- 5.2.5.7 - BitDirRead: IOType=12
- 5.2.5.8 - BitDirWrite: IOType=13
- 5.2.5.9 - PortStateRead: IOType=26
- 5.2.5.10 - PortStateWrite: IOType=27
- 5.2.5.11 - PortDirRead: IOType=28
- 5.2.5.12 - PortDirWrite: IOType=29
- 5.2.5.13 - DAC# (8-bit): IOType=34,35
- 5.2.5.14 - DAC# (16-bit): IOType=38,39
- 5.2.5.15 - Timer#: IOType=42,44
- 5.2.5.16 - Timer#Config: IOType=43,45
- 5.2.5.17 - Counter#: IOType=54,55
- 5.2.5.18 - Buzzer: IOType=63
- 5.2.6 - ReadMem (ReadCal)
- 5.2.7 - WriteMem (WriteCal)
- 5.2.8 - EraseMem (EraseCal)
- 5.2.9 - Reset
- 5.2.10 - StreamConfig
- 5.2.11 - StreamStart
- 5.2.12 - StreamData
- 5.2.13 - StreamStop
- 5.2.14 - Watchdog
- 5.2.15 - SPI
- 5.2.16 - AsynchConfig
- 5.2.17 - AsynchTX
- 5.2.18 - AsynchRX
- 5.2.19 - I²C
- 5.2.20 - SHT1X
- 5.2.21 - SetDefaults (SetToFactoryDefaults)
- 5.2.22 - ReadDefaults (ReadCurrent)
- 5.2.23 - 1-Wire
- 5.3 - Errorcodes
- 5.4 - Calibration Constants
- Appendix A - Specifications
- Appendix B - Enclosure and PCB Drawings
- U3 Firmware Revision History
- U6 Datasheet
- Preface: Warranty, Liability, Compliance
- 1 - Installation
- 2 - Hardware Description
- 2.1 - USB
- 2.2 - Power and Status LED
- 2.3 - GND and SGND
- 2.4 - VS
- 2.5 - 10UA and 200UA
- 2.6 - AIN
- 2.6.1 - Channel Numbers
- 2.6.2 - Converting Binary Readings to Voltages
- 2.6.3 - Typical Analog Input Connections
- 2.6.3.1 - Signal from the LabJack
- 2.6.3.2 - Unpowered Isolated Signal
- 2.6.3.3 - Signal Powered By the LabJack
- 2.6.3.4 - Signal Powered Externally
- 2.6.3.5 - Amplifying Small Signal Voltages
- 2.6.3.6 - Signal Voltages Beyond ±10 Volts (and Resistance Measurement)
- 2.6.3.7 - Measuring Current (Including 4-20 mA) with a Resistive Shunt
- 2.6.3.8 - Floating/Unconnected Inputs
- 2.6.4 - Internal Temperature Sensor
- 2.6.5 - Signal Range
- 2.7 - DAC
- 2.8 - Digital I/O
- 2.9 - Timers/Counters
- 2.9.1 - Timer Mode Descriptions
- 2.9.1.1 - PWM Output (16-Bit, Mode 0)
- 2.9.1.2 - PWM Output (8-Bit, Mode 1)
- 2.9.1.3 - Period Measurement (32-Bit, Modes 2 & 3)
- 2.9.1.4 - Duty Cycle Measurement (Mode 4)
- 2.9.1.5 - Firmware Counter Input (Mode 5)
- 2.9.1.6 - Firmware Counter Input With Debounce (Mode 6)
- 2.9.1.7 - Frequency Output (Mode 7)
- 2.9.1.8 - Quadrature Input (Mode 8)
- 2.9.1.9 - Timer Stop Input (Mode 9)
- 2.9.1.10 - System Timer Low/High Read (Modes 10 & 11)
- 2.9.1.11 - Period Measurement (16-Bit, Modes 12 & 13)
- 2.9.1.12 - Line-to-Line Measurement (Mode 14)
- 2.9.2 - Timer Operation/Performance Notes
- 2.9.1 - Timer Mode Descriptions
- 2.10 - SPC (or VSPC)
- 2.11 - DB37
- 2.12 - DB15
- 2.13 - OEM Connector Options
- 3 - Operation
- 4 - LabJackUD High-Level Driver
- 4.1 - Overview
- 4.2 - Function Reference
- 4.2.1 - ListAll()
- 4.2.2 - OpenLabJack()
- 4.2.3 - eGet() and ePut()
- 4.2.4 - eAddGoGet()
- 4.2.5 - AddRequest()
- 4.2.6 - Go()
- 4.2.7 - GoOne()
- 4.2.8 - GetResult()
- 4.2.9 - GetFirstResult() and GetNextResult()
- 4.2.10 - DoubleToStringAddress()
- 4.2.11 - StringToDoubleAddress()
- 4.2.12 - StringToConstant()
- 4.2.13 - ErrorToString()
- 4.2.14 - GetDriverVersion()
- 4.2.15 - TCVoltsToTemp()
- 4.2.16 - ResetLabJack()
- 4.2.17 - eAIN()
- 4.2.18 - eDAC()
- 4.2.19 - eDI()
- 4.2.20 - eDO()
- 4.2.21 - eTCConfig()
- 4.2.22 - eTCValues()
- 4.3 - Example Pseudocode
- 4.3.1 - Open
- 4.3.2 - Configuration
- 4.3.3 - Analog Inputs
- 4.3.4 - Analog Outputs
- 4.3.5 - Digital I/O
- 4.3.6 - Timers & Counters
- 4.3.7 - Stream Mode
- 4.3.8 - Raw Output/Input
- 4.3.9 - Easy Functions
- 4.3.10 - SPI Serial Communication
- 4.3.11 - I²C Serial Communication
- 4.3.12 - Asynchronous Serial Communication
- 4.3.13 - Watchdog Timer
- 4.3.14 - Miscellaneous
- 4.4 - Errorcodes
- 5 - Low-level Function Reference
- 5.1 - General Protocol
- 5.2 - Low-Level Functions
- 5.2.1 - Bad Checksum
- 5.2.2 - ConfigU6
- 5.2.3 - ConfigIO
- 5.2.4 - ConfigTimerClock
- 5.2.5 - Feedback
- 5.2.5.1 - AIN: IOType = 1
- 5.2.5.2 - AIN24: IOType = 2
- 5.2.5.3 - AIN24AR: IOType = 3
- 5.2.5.4 - WaitShort: IOType=5
- 5.2.5.5 - WaitLong: IOType=6
- 5.2.5.6 - LED: IOType=9
- 5.2.5.7 - BitStateRead: IOType=10
- 5.2.5.8 - BitStateWrite: IOType=11
- 5.2.5.9 - BitDirRead: IOType=12
- 5.2.5.10 - BitDirWrite: IOType=13
- 5.2.5.11 - PortStateRead: IOType=26
- 5.2.5.12 - PortStateWrite: IOType=27
- 5.2.5.13 - PortDirRead: IOType=28
- 5.2.5.14 - PortDirWrite: IOType=29
- 5.2.5.15 - DAC# (8-bit): IOType=34,25
- 5.2.5.16 - DAC# (16-bit): IOType=38,39
- 5.2.5.17 - Timer#: IOType=42,44,46,48
- 5.2.5.18 - Timer#Config: IOType = 43, 45, 47, 49
- 5.2.5.19 - Counter#: IOType = 54, 55
- 5.2.6 - ReadMem (ReadCal)
- 5.2.7 - WriteMem (WriteCal)
- 5.2.8 - EraseMem (EraseCal)
- 5.2.9 - SetDefaults (SetToFactoryDefaults)
- 5.2.10 - ReadDefaults (ReadCurrent)
- 5.2.11 - Reset
- 5.2.12 - StreamConfig
- 5.2.13 - StreamStart
- 5.2.14 - StreamData
- 5.2.15 - StreamStop
- 5.2.16 - Watchdog
- 5.2.17 - SPI
- 5.2.18 - AsynchConfig
- 5.2.19 - AsynchTX
- 5.2.20 - AsynchRX
- 5.2.21 - I²C
- 5.2.22 - SHT1X
- 5.2.23 - 1-Wire
- 5.2.24 - StreamAddChannels
- 5.3 - Errorcodes
- 5.4 - Calibration Constants
- Appendix A - Specifications
- Appendix B - Noise and Resolution Tables
- Appendix C - Enclosure and PCB Drawings
- U6 Firmware Revision History
- Digit Datasheet (Discontinued)
- UE9 Datasheet
- Preface
- 1 - Installation
- 2 - Hardware Description
- 2.1 - USB
- 2.2 - Ethernet
- 2.3 - Vext (Screw Terminals and Power Jack)
- 2.4 - Comm and Control LEDs
- 2.5 - GND and SGND
- 2.6 - VS
- 2.7 - AIN
- 2.7.1 - Channel Numbers
- 2.7.2 - Converting Binary Readings to Voltages
- 2.7.3 - Typical Analog Input Connections
- 2.7.3.1 - Signal from the LabJack
- 2.7.3.2 - Unpowered Isolated Signal
- 2.7.3.3 - Signal Powered by the LabJack
- 2.7.3.4 - Signal Powered Externally
- 2.7.3.5 - Amplifying Small Signal Voltages
- 2.7.3.6 - Signal Voltages Beyond ±5 Volts (and Resistance Measurement)
- 2.7.3.7 - Measuring Current (Including 4-20 mA) with a Resistive Shunt
- 2.7.3.8 - Floating/Unconnected Inputs
- 2.7.4 - Internal Temperature Sensor
- 2.8 - DAC
- 2.9 - Digital I/O
- 2.10 - Timers/Counters
- 2.10.1 - Timer Mode Descriptions
- 2.10.1.1 - PWM Output (16-Bit, Mode 0)
- 2.10.1.2 - PWM Output (8-Bit, Mode 1)
- 2.10.1.3 - Period Measurement (32-Bit, Modes 2 & 3)
- 2.10.1.4 - Duty Cycle Measurement (Mode 4)
- 2.10.1.5 - Firmware Counter Input (Mode 5)
- 2.10.1.6 - Firmware Counter Input With Debounce (Mode 6)
- 2.10.1.7 - Frequency Output (Mode 7)
- 2.10.1.8 - Quadrature Input (Mode 8)
- 2.10.1.9 - Timer Stop Input (Mode 9)
- 2.10.1.10 - System Timer Low/High Read (Modes 10 & 11)
- 2.10.1.11 - Period Measurement (16-Bit, Modes 12 & 13)
- 2.10.2 - Timer Operation/Performance Notes
- 2.10.1 - Timer Mode Descriptions
- 2.11 - SCL and SDA (or SCA)
- 2.12 - DB37
- 2.13 - DB15
- 2.14 - OEM Connector Options
- 3 - Operation
- 4 - LabJackUD High-Level Driver
- 4.1 - Overview
- 4.2 - Function Reference
- 4.2.1 - ListAll()
- 4.2.2 - OpenLabJack()
- 4.2.3 - eGet() and ePut()
- 4.2.4 - eAddGoGet()
- 4.2.5 - AddRequest()
- 4.2.6 - Go()
- 4.2.7 - GoOne()
- 4.2.8 - GetResult()
- 4.2.9 - GetFirstResult() and GetNextResult()
- 4.2.10 - DoubleToStringAddress()
- 4.2.11 - StringToDoubleAddress()
- 4.2.12 - StringToConstant()
- 4.2.13 - ErrorToString()
- 4.2.14 - GetDriverVersion()
- 4.2.15 - TCVoltsToTemp()
- 4.2.16 - ResetLabJack()
- 4.2.17 - eAIN()
- 4.2.18 - eDAC()
- 4.2.19 - eDI()
- 4.2.20 - eDO()
- 4.2.21 - eTCConfig()
- 4.2.22 - eTCValues()
- 4.3 - Example Pseudocode
- 4.3.1 - Open
- 4.3.2 - Configuration
- 4.3.3 - Analog Inputs
- 4.3.4 - Analog Outputs
- 4.3.5 - Digital I/O
- 4.3.6 - Timers & Counters
- 4.3.7 - Stream Mode
- 4.3.8 - Raw Output/Input
- 4.3.9 - Easy Functions
- 4.3.10 - SPI Serial Communication
- 4.3.11 - I²C Serial Communication
- 4.3.12 - Asynchronous Serial Communication
- 4.3.13 - Watchdog Timer
- 4.3.14 - Miscellaneous
- 4.4 - Errorcodes
- 5 - Low-level Function Reference
- 5.1 - General Protocol
- 5.2 - Comm Functions
- 5.3 - Control Functions
- 5.3.1 - BadChecksum
- 5.3.2 - ControlConfig
- 5.3.3 - Feedback (and FeedbackAlt)
- 5.3.4 - SingleIO
- 5.3.5 - TimerCounter
- 5.3.6 - StreamConfig
- 5.3.7 - StreamStart
- 5.3.8 - StreamData
- 5.3.9 - StreamStop
- 5.3.10 - ReadMem
- 5.3.11 - WriteMem
- 5.3.12 - EraseMem
- 5.3.13.1 - WatchdogConfig
- 5.3.13.2 - WatchdogRead
- 5.3.13.3 - Extended WatchdogConfig
- 5.3.13.4 - WatchdogClear
- 5.3.15 - Reset
- 5.3.16 - SPI
- 5.3.17 - AsynchConfig
- 5.3.18 - AsynchTX
- 5.3.19 - AsynchRX
- 5.3.20 - I²C
- 5.3.21 - SHT1X
- 5.3.22 - StreamDAC
- 5.3.23 - SetDefaults (SetToFactoryDefaults)
- 5.3.24 - ReadDefaults (ReadCurrent)
- 5.3.25 - 1-Wire
- 5.4 - Low-Level Errorcodes
- 5.5 - Modbus
- 5.6 - Calibration Constants
- 6 - Low-level Native Examples
- Appendix A - Specifications
- Appendix B - Noise and Resolution Tables
- Appendix C - Enclosure and PCB Drawings
- UE9 Firmware Revision History
- U12 Datasheet
- 1 - Installation
- 2 - Hardware Description
- 3 - Example Applications
- 4 - Programming Reference
- 4.1 - EAnalogIn
- 4.2 - EAnalogOut
- 4.3 - ECount
- 4.4 - EDigitalIn
- 4.5 - EDigitalOut
- 4.6 - AISample
- 4.7 - AIBurst
- 4.8 - AIStreamStart
- 4.9 - AIStreamRead
- 4.10 - AIStreamClear
- 4.11 - AOUpdate
- 4.12 - AsynchConfig
- 4.13 - Asynch
- 4.14 - BitsToVolts
- 4.15 - VoltsToBits
- 4.16 - Counter
- 4.17 - DigitalIO
- 4.18 - GetDriverVersion
- 4.19 - GetErrorString
- 4.20 - GetFirmwareVersion
- 4.21 - GetWinVersion
- 4.22 - ListAll
- 4.23 - LocalID
- 4.24 - NoThread
- 4.25 - PulseOut
- 4.26 - PulseOutStart
- 4.27 - PulseOutFinish
- 4.28 - PulseOutCalc
- 4.29 - ReEnum
- 4.30 - Reset (or ResetLJ)
- 4.31 - SHT1X
- 4.32 - SHTComm
- 4.33 - SHTCRC
- 4.34 - Synch
- 4.35 - Watchdog
- 4.36 - ReadMem
- 4.37 - WriteMem
- 4.38 - BuildOptionBits (ActiveX only)
- 4.39 - FourPack (ActiveX only)
- 4.40 - Description of Errorcodes
- 5 - Low-Level Function Reference
- Appendix A - Specifications
- Appendix B - Dimensions
- Appendix C - U12 Hardware Troubleshooting
- Appendix D - Maximum Data Rates for the LabJack U12
- Accessories
29 comments
How about Perl support for
How about Perl support for the UE9 ? UE9 has a serial port-- could I run RS-232 to it and retrieve via ethernet ?
My environment is Debian Linux. We love Perl as a test language. Python not so much.
Is LJFuse up and running for this project ?
Thanks.
At the moment we do not
At the moment we do not provide any Perl wrappers or interfaces for the UD devices, though I can look into that. Currently if you want to get working in Perl you can look into using the low-level function or Modbus protocols and communicating through ethernet. There is also the option of using LJFuse or LJSocket (both support Linux and Mac OS X), which provide a file IO or TCP socket interface which should be accessible through Perl.
To provide more information
To provide more information on serial communication low-level functions, refer to the sections 5.3.17 - 5.3.19 in the UE9 User's Guide.
This may seem left field, but
This may seem left field, but I am working on a custom application. I have need to access a Com Port resource that is registered in Windows as an COM asset. Ex. the program talks to UUT through COM1. What I would like to do is talk to UUT through ethernet as "COMX" asset, X being 3-16. Is there "canned" installer to do such? This would would be awesome, if not no problem I will write it myself. The UE9 is a great little product .
Are you saying you want to
Are you saying you want to use Windows COM port drivers (serial port) to communicate with a UE9? That would require a special virtual com port driver. We have not developed one or used one, but there might be one available that work work.
Yes, that is the jist. I am
Yes, that is the jist. I am accessing an executable that creates a "server" to the COM ports and using the Window com drivers would allow me seemless access through this software. The end goal is to have a DAC and serial port on the ethernet bus, without having to and maintain a PC. Its been done in industrial applications for sure, not sure if its been done like using this method.
I believe from the way
I believe from the way Windows handles ethernet devices, as long as you can get that COM port to list itself under windows as a valid ethernet connection with valid TCP settings. I know this is commonly done with USB -> ethernet devices, so it is possible. I'm not aware of an existing method of doing this for a COM port but it wouldn't surprise me if there is one out there.
I like the capabilities of
I like the capabilities of the LJ devices, however my programming skills need work and this is kinda my point, I'd like to see an app that you can configure the input IO channels using a drop down menu to choose the applicable function required for each channel and the ability to create a new channel and apply formula's from other channels, something like the picolog sw from picotech.
TC
We are working on a new
We are working on a new application, so your feedback is welcome. I would suggest you start with LJLogUD, and let us know what it does not do for you or does not do well. This topic does not really have to do with programming, so please continue with a comment on the LJLogUD page, a forum post, or email [email protected]. You also might consider DAQFactory.
natural log is not
natural log is not supported. Pretty useful to back convert a thermistor value to temp.
Yes, sorry about that. I was
Yes, sorry about that. I was talking about the original thread. LJLogUD does not support LN as far as I can tell. There is the equation column where you can do some math on the reading. Is this just basic math (+-*/) or is there more to it? Thanks,
The LJLogUD has a link to a
The LJLogUD has a link to a Scaling Equations sub-page, and on that page there is a link to a list of functions supported by the LabVIEW Formula Node. Functions on the list designed for integers usually do not work, but functions designed for floating point numbers usually do work. I do see natural log on the list so I just tested using y=ln(2) and get 0.69, so it does seem to work.
Is it not possible to use LJ
Is it not possible to use LJ with Matlab in Ubuntu or is it just that LJ didnt give examples of how to use it.
It should be possible to use
It should be possible to use a LabJack with MATLAB on Linux, but we have no examples for it. We currently only provide Windows MATLAB examples.
If you would like to use MATLAB in Linux, to get started take a look at the MATLAB documentation on calling functions in a shared library:
http://www.mathworks.com/help/matlab/matlab_external/calling-functions-i...
For additional helpful information, take a look at these comments:
http://labjack.com/support/ud/examples/matlab#comment-2281
http://labjack.com/support/ud/examples/matlab#comment-918
Note that the comment is referring to Mac OS X usage, but the same applies to Linux and the Exodriver shared library file on Linux is liblabjackusb.so instead of .dylib.
Latest version of labjackud.dll?
I am updating a LabVIEW project from LV 8 to LV 2015 that uses the labjackud.dll. What is the latest version of that .dll to use, or should I update to the LabJack-2015-11-19.exe shown on the website?
The latest version of the
The latest version of the LabJackUD.dll is 3.47, and the LabJack-2015-11-19.exe (and the current beta) install that version. That version of the dll should work fine under LabVIEW 2015, and we recommend using the latest version of our drivers for the latest fixes and features.
Also, if you click on the Details of the installer download, it provides a list of of the applications and drivers along with their version numbers.
included C header
The C header file that is included in the UD Driver (LabJackUD.h) is very difficult to work with. On large C projects, it's very easy to get "multiply defined symbol" compiler errors. This is due to the header containing all the variable definitions, rather than in a source file. The header should really only contain declarations via the extern keyword.
One workaround I've used is to convert all those definitions into mere macros:
const LJ_ERROR LJE_NOERROR = 0;
becomes...
#define LJE_NOERROR 0
But this is a huge effort and must be maintained every time you guys update your drivers.
Alternatively, with the file intact, I must be extremely careful to only include the LabJackUD.h file once ever in the entire project.
Any chance there's an alternate version available?
Currently there is no
Currently there is no alternative version of the header file available. In our next release we are considering changing "const" to "static const" like in the newer LJM library's header file, which would help with C's "multiply defined symbol" compiler errors.
Try doing a "replace all" with "const" to "static const" in the current header file, which will be faster than replacing with "#define".
solved
Yes, that is a much easier fix. Thanks for the recommendation. I would love if LabJack made that fix in future releases. Then, an update on my end won't break my code.
Thanks!
We released a new version of
We released a new version of the UD driver, v3.51, in the latest beta installer. The header file's constants were changed to "static const" to help prevent "multiply defined symbol" errors in C.
UD Libraries Missing
Hello,
I'm probably doing something wrong here but when I download the Software I recieve all the applications but the UD Libraries are missing.
So the installer seems to run
So the installer seems to run fine but then something goes wrong? What suggests that the UD library is not installed?
Try searching your entire hard drive for labjackud.dll and see if it is found anywhere.
Is it just me or are the
Is it just me or are the links above on this page showing:
"LabJack-2019-05-20.exe"
and the details for this file show "UD Library - Version: 3.50"
The Release is still LabJack
The Release is still LabJack-2019-05-20.exe with UD 3.50. The new Beta is LabJack-2020-03-30-beta.exe with UD 3.51, and is below the Release download. If you are not seeing the Beta, try refreshing the page in your browser.
release update
Any idea when the stable release will be updated?
The beta release has proven
The beta release has proven to be stable so far. We'll officially move it to release at probably the end of the month.
Based on our previous conversations, note that UD v3.51 with the "constants to static const for C" update in the header file will only be available in beta installer LabJack-2020-03-30-beta.exe and it will not make a stable release. We ended up reverting that change in UD v3.52 due to backwards compatibility issues (the only change in v3.52), and that is the version that will be in the stable release. So in the future you will want to keep and use the UD v3.51 beta header file for your C code.
Oh, I see. That's unfortunate
Oh, I see. That's unfortunate, but thanks for the update. Downloading now.
So I downloaded the beta.
So I downloaded the beta. The LabJackUD.h file installed is now DRIVER_VERSION 3.52. But all the const variables are remain non-static. The timestamp of this file is 7/28/2020
Yes, in 3.52 they were
Yes, in 3.52 they were changed back to non-static due to compatibility issues as mentioned in my previous post. 3.51 was the only version to have the static const in the header file, and is only available in LabJack-2020-03-30-beta.exe.