- Signal Powered Externally [UE9 Datasheet] | LabJack
« Close

Datasheets and User Guides

App Notes

Software & Driver - Signal Powered Externally [UE9 Datasheet]

An example is a box with a wire coming out that is defined as a 0-5 volt analog signal and a second wire labeled as ground. The signal is known to have 0-5 volts compared to the ground wire, but the complication is what is the voltage of the box ground compared to the LabJack ground.

If the box is known to be electrically isolated from the LabJack, the box ground can simply be connected to LabJack GND. An example would be if the box was plastic, powered by an internal battery, and does not have any wires besides the signal and ground which are connected to AINx and GND on the LabJack. Such a case is obviously isolated and easy to keep isolated. In practical applications, though, signals thought to be isolated are often not at all, or perhaps are isolated at some time but the isolation is easily lost at another time.

If the box ground is known to be the same as the LabJack GND, then perhaps only the one signal wire needs to be connected to the LabJack, but it generally does not hurt to go ahead and connect the ground wire to LabJack GND with a 100 Ω resistor. You definitely do not want to connect the grounds without a resistor.

If little is known about the box ground, a DMM can be used to measure the voltage of box ground compared to LabJack GND. As long as an extreme voltage is not measured, it is generally OK to connect the box ground to LabJack GND, but it is a good idea to put in a 100 Ω series resistor to prevent large currents from flowing on the ground. Use a small wattage resistor (typically 1/8 or 1/4 watt) so that it blows if too much current does flow. The only current that should flow on the ground is the return of the analog input bias current, which is on the order of nanoamps for the UE9.

The SGND terminal can be used instead of GND for externally powered signals. A series resistor is not needed as SGND is fused to prevent overcurrent, but a resistor will eliminate confusion that can be caused if the fuse is tripping and resetting.

In general, if there is uncertainty, a good approach is to use a DMM to measure the voltage on each signal/ground wire without any connections to the UE9. If no large voltages are noted, connect the ground to UE9 SGND with a 100 Ω series resistor. Then again use the DMM to measure the voltage of each signal wire before connecting to the UE9.

Another good general rule is to use the minimum number of ground connections. For instance, if connecting 8 sensors powered by the same external supply, or otherwise referred to the same external ground, only a single ground connection is needed to the UE9. Perhaps the ground leads from the 8 sensors would be twisted together, and then a single wire would be connected to a 100 Ω resistor which is connected to UE9 ground.


Using an 1/8 watt resistor for a fuse is asking for trouble.  A typical 1/8 watt carbon or metal film resistor will dissipate a watt or two for many minutes before failing, and become very hot.  If you are worried about overcurrent in the GND connection, use a real fuse, not a resistor.

Agreed.  If you think you might need a fuse, then use a fuse.  A key point from the discussion above, is that if you are not real sure then use SGND (which is fused) with a series resistor.

The resistor in the discussion is never meant to be a fuse.  Rather it is used to make a "weak" ground compared to other grounds.