- High Output Drive . . . >300 mA
- Rail-To-Rail Output
- Unity-Gain Bandwidth . . . 2.7 MHz
- Slew Rate . . . 1.5 V/µs
- Supply Current . . . 700 µA/Per Channel
- Supply Voltage Range . . . 2.5 V to 6 V
- Specified Temperature Range:
 - $T_A = 0°C$ to $70°C$. . . Commercial Grade
 - $T_A = -40°C$ to $125°C$. . . Industrial Grade
- Universal OpAmp EVM
description

The TLV411x single supply operational amplifiers provide output currents in excess of 300 mA at 5 V. This enables standard pin-out amplifiers to be used as high current buffers or in coil driver applications. The TLV4110 and TLV4113 come with a shutdown feature.

The TLV411x is available in the ultra small MSOP PowerPAD™ package, which offers the exceptional thermal impedance required for amplifiers delivering high current levels.

All TLV411x devices are offered in PDIP, SOIC (single and dual) and MSOP PowerPAD (dual).

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>NUMBER OF CHANNELS</th>
<th>PACKAGE TYPES</th>
<th>SHUTDOWN</th>
<th>UNIVERSAL EVM BOARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV4110</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>TLV4111</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>TLV4112</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>TLV4113</td>
<td>2</td>
<td>10</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.
TLV4110 AND TLV4111 AVAILABLE OPTIONS

<table>
<thead>
<tr>
<th>TA</th>
<th>SMALL OUTLINE</th>
<th>PACKAGED DEVICES</th>
<th>MSOP</th>
<th>SMALL OUTLINE</th>
<th>SYMBOl</th>
<th>PLASTIC DIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C to 70°C</td>
<td>TLV4110CD</td>
<td>TLV410CDGN</td>
<td>xxTIAHL</td>
<td>TLV4110CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLV4111CD</td>
<td>TLV411CDGN</td>
<td>xxTIAHN</td>
<td>TLV4111CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–40°C to 125°C</td>
<td>TLV4110ID</td>
<td>TLV411IDGN</td>
<td>xxTIAMH</td>
<td>TLV4110IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLV4111ID</td>
<td>TLV4111IDGN</td>
<td>xxTIAMO</td>
<td>TLV4111IP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV4110CDR).
‡ In the SOIC package, the maximum RMS output power is thermally limited to 350 mW; 700 mW peaks can be driven, as long as the RMS value is less than 350 mW.

TLV4112 AND TLV4113 AVAILABLE OPTIONS

<table>
<thead>
<tr>
<th>TA</th>
<th>SMALL OUTLINE</th>
<th>PACKAGED DEVICES</th>
<th>MSOP</th>
<th>SMALL OUTLINE</th>
<th>SYMBOl</th>
<th>SMALL OUTLINE</th>
<th>SYMBOl</th>
<th>PLASTIC DIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C to 70°C</td>
<td>TLV4112CD</td>
<td>TLV4112CDGN</td>
<td>xxTIAHP</td>
<td>—</td>
<td>—</td>
<td>TLV4112CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLV4113CD</td>
<td>—</td>
<td>—</td>
<td>TLV4113CDGN</td>
<td>xxTIAPR</td>
<td>TLV4113CN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–40°C to 125°C</td>
<td>TLV4112ID</td>
<td>TLV4112IDGN</td>
<td>xxTIAMH</td>
<td>—</td>
<td>—</td>
<td>TLV4112IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLV4113ID</td>
<td>—</td>
<td>—</td>
<td>TLV4113IDGN</td>
<td>xxTIAMH</td>
<td>TLV4113IN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV4112CDR).
‡ In the SOIC package, the maximum RMS output power is thermally limited to 350 mW; 700 mW peaks can be driven, as long as the RMS value is less than 350 mW.

TLV411x PACKAGE PIN OUTS

TLV4110

D, DGN OR P PACKAGE (TOP VIEW)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN−</td>
<td>IN+</td>
<td>GND</td>
<td>NC</td>
<td>1OUT</td>
<td>1IN+</td>
<td>1IN−</td>
<td>SHDN</td>
</tr>
</tbody>
</table>

DGQ PACKAGE (TOP VIEW)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1OUT</td>
<td>1IN+</td>
<td>1IN−</td>
<td>GND</td>
</tr>
</tbody>
</table>

TLV4111

D, DGN OR P PACKAGE (TOP VIEW)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN−</td>
<td>IN+</td>
<td>GND</td>
<td>NC</td>
<td>1OUT</td>
<td>1IN+</td>
<td>1IN−</td>
<td>VDD</td>
</tr>
</tbody>
</table>

DGQ PACKAGE (TOP VIEW)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1OUT</td>
<td>1IN+</td>
<td>1IN−</td>
<td>2SHDN</td>
</tr>
</tbody>
</table>

TLV4112

D, DGN, OR P PACKAGE (TOP VIEW)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN−</td>
<td>IN+</td>
<td>GND</td>
<td>NC</td>
<td>1OUT</td>
<td>1IN+</td>
<td>1IN−</td>
<td>2IN+</td>
</tr>
</tbody>
</table>

DGQ PACKAGE (TOP VIEW)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1OUT</td>
<td>1IN+</td>
<td>1IN−</td>
<td>2IN−</td>
</tr>
</tbody>
</table>

NC – No internal connection
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, VDD (see Note 1) ... 7 V
Differential input voltage, V_ID ... ±VDD
Input voltage range, V_I ... ±VDD
Output current, IO (see Note 2) ... 800 mA
Continuous /RMS output current, IO (each output of amplifier): T_J ≤ 105°C 350 mA
T_J ≤ 150°C 110 mA
Peak output current, IO (each output of amplifier): T_J ≤ 105°C 500 mA
T_J ≤ 150°C 155 mA
Continuous total power dissipation See Dissipation Rating Table
Operating free-air temperature range, T_A: C suffix 0°C to 70°C
I suffix −40°C to 125°C
Maximum junction temperature, T_J 150°C
Storage temperature range, T_stg −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to GND.
2. To prevent permanent damage the die temperature must not exceed the maximum junction temperature.

DISSIPATION RATING TABLE

<table>
<thead>
<tr>
<th>PACKAGE</th>
<th>θJC (°C/W)</th>
<th>θJA (°C/W)</th>
<th>T_A ≤ 25°C POWER RATING</th>
<th>T_A = 125°C POWER RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (8)</td>
<td>38.3</td>
<td>176</td>
<td>710 mW</td>
<td>142 mW</td>
</tr>
<tr>
<td>D (14)</td>
<td>26.9</td>
<td>122.3</td>
<td>1022 mW</td>
<td>204.4 mW</td>
</tr>
<tr>
<td>DGN (8)‡</td>
<td>4.7</td>
<td>52.7</td>
<td>2.37 W</td>
<td>474.4 mW</td>
</tr>
<tr>
<td>DGQ (10)‡</td>
<td>4.7</td>
<td>52.3</td>
<td>2.39 W</td>
<td>478 mW</td>
</tr>
<tr>
<td>P (8)</td>
<td>41</td>
<td>104</td>
<td>1200 mW</td>
<td>240.4 mW</td>
</tr>
<tr>
<td>N (14)</td>
<td>32</td>
<td>78</td>
<td>1600 mW</td>
<td>320.5 mW</td>
</tr>
</tbody>
</table>

‡ See The Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report (literature number SLMA002), for more information on the PowerPAD package. The thermal data was measured on a PCB layout based on the information in the section entitled Texas Instruments Recommended Board for PowerPAD on page 33 of the before mentioned document.

recommended operating conditions

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, VDD</td>
<td>2.5</td>
<td>6 V</td>
</tr>
<tr>
<td>Common-mode input voltage range, V_ICR</td>
<td>0</td>
<td>VDD − 1.5 V</td>
</tr>
<tr>
<td>Operating free-air temperature, T_A</td>
<td>0</td>
<td>70°C</td>
</tr>
<tr>
<td>Shutdown turn-on/off voltage level§</td>
<td>V(on)</td>
<td>VDD = 3 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 5 V</td>
</tr>
<tr>
<td></td>
<td>V(off)</td>
<td>VDD = 3 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VDD = 5 V</td>
</tr>
</tbody>
</table>

§ Relative to GND
electrical characteristics at recommend operating conditions, $V_{DD} = 3\, V$ and $5\, V$ (unless otherwise noted)

dc performance

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A†</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IO} Input offset voltage</td>
<td>$V_{IC} = V_{DD}/2$, $R_L = 100, \Omega$, $V_O = V_{DD}/2$, $R_S = 50, \Omega$</td>
<td>$25^\circ C$</td>
<td>175</td>
<td>3500</td>
<td>4000</td>
<td>μV</td>
</tr>
<tr>
<td>αV_{IO} Offset voltage draft</td>
<td>$V_{DD} = 3, V$, $R_L = 100, \Omega$, $V_O = V_{DD}/2$, $R_S = 50, \Omega$</td>
<td>$25^\circ C$</td>
<td>3</td>
<td>63</td>
<td></td>
<td>$\mu V/^\circ C$</td>
</tr>
<tr>
<td>CMRR Common-mode rejection ratio</td>
<td>$V_{DD} = 5, V$, $V_{IC} = 0$ to $2, V$, $R_S = 50, \Omega$</td>
<td>$25^\circ C$</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVD Large-signal differential voltage amplification</td>
<td>$V_{DD} = 3, V$, $V_O(PP) = 0$ to $1, V$, $R_L = 10, \Omega$</td>
<td>$25^\circ C$</td>
<td>78</td>
<td>84</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = 5, V$, $V_O(PP) = 0$ to $3, V$, $R_L = 10, k, \Omega$</td>
<td>$25^\circ C$</td>
<td>88</td>
<td>94</td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

† Full range is $0^\circ C$ to $70^\circ C$ for C suffix and $-40^\circ C$ to $125^\circ C$ for I suffix. If not specified, full range is $-40^\circ C$ to $125^\circ C$.

input characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A†</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IO} Input offset current</td>
<td>$V_{IC} = V_{DD}/2$, $V_O = V_{DD}/2$, $TLV411xC$, $TLV411xI$</td>
<td>$25^\circ C$</td>
<td>0.3</td>
<td>25</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{IB} Input bias current</td>
<td>$V_O = V_{DD}/2$, $R_S = 50, \Omega$, $TLV411xC$, $TLV411xI$</td>
<td>$25^\circ C$</td>
<td>0.3</td>
<td>50</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>$R_{(d)}$ Differential input resistance</td>
<td></td>
<td>$25^\circ C$</td>
<td>1000</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>CIC Common-mode input capacitance</td>
<td>$f = 100, Hz$, $f = 100, Hz$</td>
<td>$25^\circ C$</td>
<td>5</td>
<td></td>
<td></td>
<td>μF</td>
</tr>
</tbody>
</table>

† Full range is $0^\circ C$ to $70^\circ C$ for C suffix and $-40^\circ C$ to $125^\circ C$ for I suffix. If not specified, full range is $-40^\circ C$ to $125^\circ C$.
electrical characteristics at specified free-air temperature, $V_{DD} = 3$ V and 5 V (unless otherwise noted) (continued)

output characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A†</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>$V_{DD} = 3$ V, $V_{IC} = V_{DD}/2$</td>
<td>$I_{OH} = -10$ mA</td>
<td>25°C</td>
<td>2.7</td>
<td>2.97</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = -100$ mA</td>
<td>25°C</td>
<td>2.6</td>
<td>2.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>2.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = 5$ V, $V_{IC} = V_{DD}/2$</td>
<td>$I_{OH} = -10$ mA</td>
<td>25°C</td>
<td>4.7</td>
<td>4.96</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = -100$ mA</td>
<td>25°C</td>
<td>4.6</td>
<td>4.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OH} = -200$ mA</td>
<td>25°C</td>
<td>4.45</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$-40°C$ to $85°C$</td>
<td></td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>$V_{DD} = 3$ V and 5 V, $V_{IC} = V_{DD}/2$</td>
<td>$I_{OL} = 10$ mA</td>
<td>25°C</td>
<td>0.03</td>
<td>0.1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OL} = 100$ mA</td>
<td>25°C</td>
<td>0.33</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = 5$ V, $V_{IC} = V_{DD}/2$</td>
<td>$I_{OL} = 200$ mA</td>
<td>25°C</td>
<td>0.38</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>$-40°C$ to $85°C$</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_O</td>
<td>Measured at 0.5 V from rail</td>
<td>$V_{DD} = 3$ V</td>
<td>25°C</td>
<td>±120</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = 5$ V</td>
<td></td>
<td>±120</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Sourcing</td>
<td>25°C</td>
<td>800</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Sinking</td>
<td>25°C</td>
<td>800</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

† Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.
‡ When driving output currents in excess of 200 mA, the MSOP PowerPAD package is required for thermal dissipation.

power supply

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A†</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>$V_{O} = V_{DD}/2$</td>
<td>25°C</td>
<td>700</td>
<td>1000</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>Full range</td>
<td></td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>$V_{DD} = 2.7$ to 3.3 V, $V_{IC} = V_{DD}/2$</td>
<td>25°C</td>
<td>70</td>
<td>82</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>No load, $V_{IC} = V_{DD}/2$</td>
<td>Full range</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = 4.5$ to 5.5 V, $V_{IC} = V_{DD}/2$</td>
<td>25°C</td>
<td>70</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No load, $V_{IC} = V_{DD}/2$</td>
<td>Full range</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.
electrical characteristics at specified free-air temperature, $V_{DD} = 3 \text{ V}$ and 5 \text{ V} (unless otherwise noted) (continued)

Dynamic Performance

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A(^\dagger)</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBWP</td>
<td>$R_L = 100 \Omega$ $C_L = 10 \text{ pF}$</td>
<td></td>
<td>25°C</td>
<td>2.7</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>$V_{DD} = 3 \text{ V}$ $V_{O(\text{pp})} = 2 \text{ V}$, $R_L = 100 \Omega$, $C_L = 10 \text{ pF}$</td>
<td></td>
<td>25°C</td>
<td>0.8</td>
<td>1.57</td>
<td>V/\mu s</td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = 5 \text{ V}$ $V_{O(\text{pp})} = 2 \text{ V}$, $R_L = 100 \Omega$, $C_L = 10 \text{ pF}$</td>
<td></td>
<td>Full range</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = 5 \text{ V}$ $V_{O(\text{pp})} = 1 \text{ V}$, $A_V = -1$, $R_L = 100 \Omega$, $C_L = 10 \text{ pF}$</td>
<td></td>
<td>25°C</td>
<td>1</td>
<td>1.57</td>
<td>V/\mu s</td>
</tr>
<tr>
<td></td>
<td>$V_{DD} = 5 \text{ V}$ $V_{O(\text{pp})} = 1 \text{ V}$, $A_V = -1$, $R_L = 100 \Omega$, $C_L = 10 \text{ pF}$</td>
<td></td>
<td>Full range</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>φM</td>
<td>$R_L = 100 \Omega$, $C_L = 10 \text{ pF}$</td>
<td></td>
<td>25°C</td>
<td>66</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>$R_L = 100 \Omega$, $C_L = 10 \text{ pF}$</td>
<td></td>
<td>25°C</td>
<td>16</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>t_s</td>
<td>$V_{(\text{STEP})\text{pp}} = 1 \text{ V}$, $A_V = -1$, $R_L = 100 \Omega$, $C_L = 10 \text{ pF}$</td>
<td></td>
<td>0.1%</td>
<td>0.7</td>
<td>\mu s</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.01%</td>
<td>1.3</td>
<td>\mu s</td>
<td></td>
</tr>
</tbody>
</table>

\(^\dagger\) Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.

Noise/Distortion Performance

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD+N</td>
<td>$V_{O(\text{pp})} = V_{DD}/2 \text{ V}$, $R_L = 100 \Omega$, $f = 100 \text{ Hz}$</td>
<td></td>
<td>25°C</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{O(\text{pp})} = V_{DD}/2 \text{ V}$, $R_L = 100 \Omega$, $f = 10 \text{ kHz}$</td>
<td></td>
<td>$A_V = 1$</td>
<td>0.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$A_V = 10$</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$A_V = 100$</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_n</td>
<td>$f = 100 \text{ Hz}$</td>
<td></td>
<td>25°C</td>
<td>55</td>
<td>nV/\sqrt{\text{Hz}}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f = 10 \text{ kHz}$</td>
<td></td>
<td></td>
<td>10</td>
<td>nV/\sqrt{\text{Hz}}</td>
<td></td>
</tr>
<tr>
<td>I_n</td>
<td>$f = 1 \text{ kHz}$</td>
<td></td>
<td></td>
<td>0.31</td>
<td>fA/\sqrt{\text{Hz}}</td>
<td></td>
</tr>
</tbody>
</table>

Shutdown Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>T_A(^\dagger)</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{DD(SHDN)}$</td>
<td>$V_{SHDN} = 0 \text{ V}$</td>
<td></td>
<td>25°C</td>
<td>3.4</td>
<td>10</td>
<td>\mu A</td>
</tr>
<tr>
<td></td>
<td>$R_L = 100 \Omega$</td>
<td></td>
<td>Full range</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{(ON)}$</td>
<td>$A_V = -1$, $R_L = 100 \Omega$, $V_{DD} = 3 \text{ V}$</td>
<td></td>
<td>25°C</td>
<td>1</td>
<td></td>
<td>\mu s</td>
</tr>
<tr>
<td>$t_{(Off)}$</td>
<td>$A_V = -1$, $R_L = 100 \Omega$, $V_{DD} = 3 \text{ V}$</td>
<td></td>
<td>25°C</td>
<td>3.3</td>
<td></td>
<td>\mu s</td>
</tr>
</tbody>
</table>

\(^\dagger\) Full range is 0°C to 70°C for C suffix and −40°C to 125°C for I suffix. If not specified, full range is −40°C to 125°C.

\(+\) Disable time and enable time are defined as the interval between application of the logic signal to V_{SHDN} and the point at which the supply current has reached half its final value.
TYPICAL CHARACTERISTICS

Table of Graphs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{io}</td>
<td>Input offset voltage</td>
<td>1, 2</td>
</tr>
<tr>
<td>CMRR</td>
<td>Common-mode rejection ratio</td>
<td>3</td>
</tr>
<tr>
<td>V_{oh}</td>
<td>High-level output voltage</td>
<td>4, 6</td>
</tr>
<tr>
<td>V_{ol}</td>
<td>Low-level output voltage</td>
<td>5, 7</td>
</tr>
<tr>
<td>Z_0</td>
<td>Output impedance</td>
<td>8</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Supply current</td>
<td>9</td>
</tr>
<tr>
<td>k_{SVR}</td>
<td>Power supply voltage rejection ratio</td>
<td>10</td>
</tr>
<tr>
<td>A_{VD}</td>
<td>Differential voltage amplification and phase</td>
<td>11</td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Voltage-follower signal pulse response</td>
<td>13</td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate vs Temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total harmonic distortion+noise</td>
<td></td>
</tr>
<tr>
<td>V_{n}</td>
<td>Equivalent input voltage noise</td>
<td>14</td>
</tr>
<tr>
<td>Phase margin</td>
<td>vs Capacitive load</td>
<td>15</td>
</tr>
<tr>
<td>Voltage-follower signal pulse response</td>
<td>vs Capacitive load</td>
<td>16</td>
</tr>
<tr>
<td>Inverting large-signal pulse response</td>
<td>vs Frequency</td>
<td>17</td>
</tr>
<tr>
<td>Small-signal inverting pulse response</td>
<td>vs Frequency</td>
<td>18, 19</td>
</tr>
<tr>
<td>Crosstalk</td>
<td>vs Frequency</td>
<td>20, 21</td>
</tr>
<tr>
<td>Shutdown forward and reverse isolation</td>
<td>vs Frequency</td>
<td>22</td>
</tr>
<tr>
<td>Shutdown supply current</td>
<td>vs Free-air temperature</td>
<td>23</td>
</tr>
<tr>
<td>Shutdown supply current/output voltage</td>
<td>vs Free-air temperature</td>
<td>24</td>
</tr>
<tr>
<td>Shutdown supply current/output voltage</td>
<td>vs Free-air temperature</td>
<td>25</td>
</tr>
<tr>
<td>Shutdown supply current/output voltage</td>
<td>vs Free-air temperature</td>
<td>26</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

INPUT OFFSET VOLTAGE

VS COMMON-MODE INPUT VOLTAGE

- V_{ICR} = Common-Mode Input Voltage (V)
- V_{IO} = Input Offset Voltage (V)

![Figure 1](image1)

INPUT OFFSET VOLTAGE

VS COMMON-MODE INPUT VOLTAGE

- V_{ICR} = Common-Mode Input Voltage (V)
- V_{IO} = Input Offset Voltage (V)

![Figure 2](image2)

COMMON-MODE REJECTION RATIO

VS FREQUENCY

- $V_{DD} = 3V$
- $T_A = 25^\circ C$

![Figure 3](image3)

HIGH-LEVEL OUTPUT VOLTAGE

VS HIGH-LEVEL OUTPUT CURRENT

- $V_{DD} = 3V$
- $T_A = 25^\circ C$
- $T_A = 0^\circ C$
- $T_A = 70^\circ C$
- $T_A = −40^\circ C$

![Figure 4](image4)

LOW-LEVEL OUTPUT VOLTAGE

VS LOW-LEVEL OUTPUT CURRENT

- $V_{DD} = 3V$
- $T_A = 25^\circ C$
- $T_A = 0^\circ C$
- $T_A = 70^\circ C$
- $T_A = −40^\circ C$

![Figure 5](image5)

OUTPUT IMPEDANCE

VS FREQUENCY

- $V_{DD} = 3 & 5V$
- $T_A = 25^\circ C$

![Figure 6](image6)

SUPPLY CURRENT

VS SUPPLY VOLTAGE

- $V_{DD} = 3V$
- $V_{DD} = 5V$
- $T_A = 125^\circ C$
- $T_A = 70^\circ C$
- $T_A = 25^\circ C$
- $T_A = 0^\circ C$
- $T_A = −40^\circ C$

![Figure 7](image7)
TYPICAL CHARACTERISTICS

POWER SUPPLY REJECTION RATIO

Figure 10

Differential Voltage Amplification and Phase

Figure 11

GAIN-BANDWIDTH PRODUCT

Figure 12

SLEW RATE

Figure 13

TOTAL HARMONIC DISTORTION+NOISE

Figure 15

EQUIVALENT INPUT VOLTAGE NOISE

Figure 16

PHASE MARGIN

Figure 17
TYPICAL CHARACTERISTICS

VOLTAGE-FOLLOWER

LARGE-SIGNAL PULSE RESPONSE

VDD = 5 V
AV = 1
RL = 100 Ω
CL = 10 pF
TA = 25°C

VDD = 5 V
AV = 1
RL = 100 Ω
CL = 10 pF
VIN = 100 mV

VDD = 5 V
AV = 1
RL = 100 Ω
CL = 50 pF
TA = 25°C
VIN = 2.5 V

Figure 18

VOLTAGE-FOLLOWER

SMALL-SIGNAL PULSE RESPONSE

VDD = 5 V
AV = 1
RL = 100 Ω
CL = 10 pF
TA = 25°C

VDD = 5 V
AV = 1
RL = 100 Ω
CL = 50 pF
TA = 25°C
VIN = 2.5 V

VDD = 5 V
AV = 1
RL = 100 Ω
CL = 50 pF
TA = 25°C
VIN = 2.5 V

Figure 19

INVERTING LARGE-SIGNAL

PULSE RESPONSE

VDD = 5 V
AV = −1
RL = 100 Ω
CL = 50 pF
TA = 25°C
VIN = 2.5 V

VDD = 5 V
AV = −1
RL = 100 Ω
CL = 50 pF
TA = 25°C
VIN = 2.5 V

VDD = 3 & 5 V
RL = 100 Ω
All Channels

Figure 20

SMALL-SIGNAL INVERTING

PULSE RESPONSE

VDD = 5 V
AV = −1
RL = 100 Ω
CL = 50 pF
TA = 25°C
VIN = 2.5 V

VDD = 5 V
AV = −1
RL = 100 Ω
CL = 50 pF
TA = 25°C
VIN = 2.5 V

VDD = 3 & 5 V
RL = 100 Ω
All Channels

Figure 21

CROSSTALK

VS FREQUENCY

VDD = 3 & 5 V
VIN = 4 V pp

VDD = 3 & 5 V
VIN = 2 V pp

Figure 22

SHUTDOWN FORWARD AND

REVERSE ISOLATION

VDD = 3 and 5 V,
RL = 100 Ω,
CL = 50 pF,
AV = 1,
TA = 25°C
VIN = 0.1 V pp

VDD = 3 and 5 V
VIN = VDD / 2,
VDD = 3 & 5 V
VIN = 2 V pp

Figure 23

SHUTDOWN SUPPLY CURRENT

VS FREE-AIR TEMPERATURE

I DD = Shutdown Supply Current in µA

VDD = 3 and 5 V
VIN = VDD / 2,
No Load

TA = Free-Air Temperature °C

Figure 24
TYPICAL CHARACTERISTICS

SHUTDOWN SUPPLY CURRENT / OUTPUT VOLTAGE

Figure 26
APPLICATION INFORMATION

shutdown function

Two members of the TLV411x family (TLV4110/3) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to just nano amps per channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. In order to save power in shutdown mode, an external pullup resistor is required, therefore, to enable the amplifier the shutdown terminal must be pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown.

driving a capacitive load

When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 1 nF, it is recommended that a resistor be placed in series (R\text{NULL}) with the output of the amplifier, as shown in Figure 27. A maximum value of 20 Ω should work well for most applications.

![Figure 27. Driving a Capacitive Load](image)

offset voltage

The output offset voltage, \(V_{OO}\), is the sum of the input offset voltage \(V_{IO}\) and both input bias currents \(I_{IB}\) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

![Figure 28. Output Offset Voltage Model](image)

\[
V_{OO} = V_{IO} \left(1 + \frac{R_F}{R_G}\right) \pm I_{IB} R_S \left(1 + \frac{R_F}{R_G}\right) \pm I_{IB} R_F
\]
general power design considerations

When driving heavy loads at high junction temperatures there is an increased probability of electromigration affecting the long term reliability of ICs. Therefore for this not to be an issue either:

- The output current must be limited (at these high junction temperatures).

or

- The junction temperature must be limited.

The maximum continuous output current at a die temperature 150°C will be 1/3 of the current at 105°C.

The junction temperature will be dependent on the ambient temperature around the IC, thermal impedance from the die to the ambient and power dissipated within the IC.

\[T_J = T_A + \theta_{JA} \times P_{DIS} \]

Where:

- \(P_{DIS} \) is the IC power dissipation and is equal to the output current multiplied by the voltage dropped across the output of the IC.
- \(\theta_{JA} \) is the thermal impedance between the junction and the ambient temperature of the IC.
- \(T_J \) is the junction temperature.
- \(T_A \) is the ambient temperature.

Reducing one or more of these factors results in a reduced die temperature. The 8-pin SOIC (small outline integrated circuit) has a thermal impedance from junction to ambient of 176°C/W. For this reason it is recommended that the maximum power dissipation of the 8-pin SOIC package be limited to 350 mW, with peak dissipation of 700 mW as long as the RMS value is less than 350 mW.

The use of the MSOP PowerPAD™ dramatically reduces the thermal impedance from junction to case. And with correct mounting, the reduced thermal impedance greatly increases the IC’s permissible power dissipation and output current handling capability. For example, the power dissipation of the PowerPAD™ is increased to above 1 W. Sinusoidal and pulse-width modulated output signals also increase the output current capability. The equivalent dc current is proportional to the square-root of the duty cycle:

\[I_{DC(EQ)} = I_{Cont} \times \sqrt{\text{(duty cycle)}} \]

<table>
<thead>
<tr>
<th>CURRENT DUTY CYCLE AT PEAK RATED CURRENT</th>
<th>EQUIVALENT DC CURRENT AS A PERCENTAGE OF PEAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>70</td>
<td>84</td>
</tr>
<tr>
<td>50</td>
<td>71</td>
</tr>
</tbody>
</table>

Note that with an operational amplifier, a duty cycle of 70% would often result in the op amp sourcing current 70% of the time and sinking current 30%, therefore, the equivalent dc current would still be 0.84 times the continuous current rating at a particular junction temperature.
APPLICATION INFORMATION

general PowerPAD design considerations

The TLV411x is available in a thermally-enhanced PowerPAD family of packages. These packages are constructed using a downset leadframe upon which the die is mounted [see Figure 30(a) and Figure 30(b)]. This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package [see Figure 30(c)]. Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad.

The PowerPAD package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad must be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat dissipating device.

Soldering the PowerPAD to the PCB is always recommended, even with applications that have low-power dissipation. This provides the necessary thermal and mechanical connection between the lead frame die pad and the PCB.

The PowerPAD package represents a breakthrough in combining the small area and ease of assembly of surface mount with mechanical methods of heatsinking.

NOTE A: The thermal pad is electrically isolated from all terminals in the package.

Figure 30. Views of Thermally-Enhanced DGN Package
APPLICATION INFORMATION

Although there are many ways to properly heatsink the PowerPAD package, the following steps illustrate the recommended approach.

general PowerPAD design considerations (continued)

1. The thermal pad must be connected to the most negative supply voltage on the device, GND.
2. Prepare the PCB with a top side etch pattern as illustrated in the thermal land pattern mechanical drawings at the end of this document. There should be etch for the leads as well as etch for the thermal pad.
3. Place five holes in the area of the thermal pad. These holes should be 13 mils in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow.
4. Additional vias may be placed anywhere along the thermal plane outside of the thermal pad area. This helps dissipate the heat generated by the TLV411x IC. These additional vias may be larger than the 13-mil diameter vias directly under the thermal pad. They can be larger because they are not in the thermal pad area to be soldered so that wicking is not a problem.
5. Connect all holes to the internal ground plane that is at the same voltage potential as the device GND pin.
6. When connecting these holes to the ground plane, do not use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, the holes under the TLV411x PowerPAD package should make their connection to the internal ground plane with a complete connection around the entire circumference of the plated-through hole.
7. The top-side solder mask should leave the terminals of the package and the thermal pad area with its five holes exposed. The bottom-side solder mask should cover the five holes of the thermal pad area. This prevents solder from being pulled away from the thermal pad area during the reflow process.
8. Apply solder paste to the exposed thermal pad area and all of the IC terminals.
9. With these preparatory steps in place, the TLV411x IC is simply placed in position and run through the solder reflow operation as any standard surface-mount component. This results in a part that is properly installed.

For a given θ_{JA}, the maximum power dissipation is shown in Figure 31 and is calculated by the following formula:

$$P_D = \left(\frac{T_{MAX} - T_A}{\theta_{JA}} \right)$$

Where:

- P_D = Maximum power dissipation of TLV411x IC (watts)
- T_{MAX} = Absolute maximum junction temperature (150°C)
- T_A = Free-ambient air temperature (°C)
- $\theta_{JA} = \theta_{JC} + \theta_{CA}$
- θ_{JC} = Thermal coefficient from junction to case
- θ_{CA} = Thermal coefficient from case to ambient air (°C/W)
The next consideration is the package constraints. The two sources of heat within an amplifier are quiescent power and output power. The designer should never forget about the quiescent heat generated within the device, especially multi-amplifier devices. Because these devices have linear output stages (Class A-B), most of the heat dissipation is at low output voltages with high output currents.

The other key factor when dealing with power dissipation is how the devices are mounted on the PCB. The PowerPAD devices are extremely useful for heat dissipation. But, the device should always be soldered to a copper plane to fully use the heat dissipation properties of the PowerPAD. The SOIC package, on the other hand, is highly dependent on how it is mounted on the PCB. As more trace and copper area is placed around the device, θ_{JA} decreases and the heat dissipation capability increases. The currents and voltages shown in these graphs are for the total package. For the dual amplifier packages, the sum of the RMS output currents and voltages should be used to choose the proper package.
APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using MicroSim Parts™, the model generation software used with MicroSim PSpice™. The Boyle macromodel (see Note 3) and subcircuit in Figure 33 are generated using the TLV411x typical electrical and operating characteristics at $T_A = 25^\circ C$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification
- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

Figure 32. Boyle Macromodel and Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.
Packaging Information

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV4110ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4110I</td>
<td></td>
</tr>
<tr>
<td>TLV4110IDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4110I</td>
<td></td>
</tr>
<tr>
<td>TLV4110IDGNR</td>
<td>ACTIVE</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AHO</td>
<td></td>
</tr>
<tr>
<td>TLV4110IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4110I</td>
<td></td>
</tr>
<tr>
<td>TLV4110IP</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>4111C</td>
<td></td>
</tr>
<tr>
<td>TLV4110IPE4</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>TLV4110I</td>
<td></td>
</tr>
<tr>
<td>TLV4111CD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>4111C</td>
<td></td>
</tr>
<tr>
<td>TLV4111CDGN</td>
<td>ACTIVE</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>AHO</td>
<td></td>
</tr>
<tr>
<td>TLV4111ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4111I</td>
<td></td>
</tr>
<tr>
<td>TLV4111IDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4111I</td>
<td></td>
</tr>
<tr>
<td>TLV4111IDGNG4</td>
<td>ACTIVE</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AHO</td>
<td></td>
</tr>
<tr>
<td>TLV4111IDGNR</td>
<td>ACTIVE</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AHO</td>
<td></td>
</tr>
<tr>
<td>TLV4111IDGNG4</td>
<td>ACTIVE</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AHO</td>
<td></td>
</tr>
<tr>
<td>TLV4111IDR</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4111I</td>
<td></td>
</tr>
<tr>
<td>TLV4112CD</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>4112C</td>
<td></td>
</tr>
<tr>
<td>TLV4112CDGN</td>
<td>ACTIVE</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>CU NIPDAUAG</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>AHP</td>
</tr>
<tr>
<td>Orderable Device</td>
<td>Status</td>
<td>Package Type</td>
<td>Package Drawing</td>
<td>PIns</td>
<td>Package Qty</td>
<td>Eco Plan</td>
<td>Lead/Ball Finish</td>
<td>MSL Peak Temp</td>
<td>Op Temp (°C)</td>
<td>Device Marking</td>
<td>Samples</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>TLV4112CDNG4</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGN</td>
<td>8</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>AHP</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4112CP</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>50</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>0 to 70</td>
<td>TLV4112C</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4112ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4112I</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4112IDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>75</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4112I</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4112IDGN</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGN</td>
<td>8</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AHQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4112IDGNR</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AHQ</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4112IDGQR</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>AHR</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4112IDGQRG4</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>0 to 70</td>
<td>AHR</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4113ID</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4113I</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4113IDG4</td>
<td>ACTIVE</td>
<td>SOIC</td>
<td>D</td>
<td>14</td>
<td>50</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>4113I</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4113IDGQ</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGQ</td>
<td>10</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Call TI</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AHS</td>
</tr>
<tr>
<td>TLV4113IDGG4</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGQ</td>
<td>10</td>
<td>80</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AHS</td>
<td>Samples</td>
</tr>
<tr>
<td>TLV4113IDGQR</td>
<td>ACTIVE</td>
<td>MSOP-</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU NIPDAU</td>
<td>Call TI</td>
<td>Level-1-260C-UNLIM</td>
<td>-40 to 125</td>
<td>AHS</td>
</tr>
<tr>
<td>TLV4113IN</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>N</td>
<td>14</td>
<td>25</td>
<td>Pb-Free (RoHS)</td>
<td>CU NIPDAU</td>
<td>N / A for Pkg Type</td>
<td>-40 to 125</td>
<td>TLV4113I</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV4113:
• Enhanced Product: TLV4113-EP

NOTE: Qualified Version Definitions:
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
TAPE AND REEL INFORMATION

REEL DIMENSIONS

![Reel Diagram](image)

TAPE DIMENSIONS

- **A0**: Dimension designed to accommodate the component width
- **B0**: Dimension designed to accommodate the component length
- **K0**: Dimension designed to accommodate the component thickness
- **W**: Overall width of the carrier tape
- **P1**: Pitch between successive cavity centers

All dimensions are nominal.

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Reel Diameter (mm)</th>
<th>Reel Width W1 (mm)</th>
<th>A0 (mm)</th>
<th>B0 (mm)</th>
<th>K0 (mm)</th>
<th>P1 (mm)</th>
<th>W (mm)</th>
<th>Pin1 Quadrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV4110IDGNR</td>
<td>MSOP-Power PAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLV4110IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLV4111IDGNR</td>
<td>MSOP-Power PAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLV4111IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLV4112IDGNR</td>
<td>MSOP-Power PAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLV4112IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>6.4</td>
<td>5.2</td>
<td>2.1</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLV4113CDGQR</td>
<td>MSOP-Power PAD</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
<tr>
<td>TLV4113IDGQR</td>
<td>MSOP-Power PAD</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>330.0</td>
<td>12.4</td>
<td>5.3</td>
<td>3.4</td>
<td>1.4</td>
<td>8.0</td>
<td>12.0</td>
<td>Q1</td>
</tr>
</tbody>
</table>
TAPE AND REEL BOX DIMENSIONS

<table>
<thead>
<tr>
<th>Device</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>SPQ</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV4110IDGNR</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>358.0</td>
<td>335.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV4110IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TLV4111IDGNR</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>358.0</td>
<td>335.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV4111IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TLV4112IDGNR</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>358.0</td>
<td>335.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV4112IDGNR</td>
<td>MSOP-PowerPAD</td>
<td>DGN</td>
<td>8</td>
<td>2500</td>
<td>364.0</td>
<td>364.0</td>
<td>27.0</td>
</tr>
<tr>
<td>TLV4112IDR</td>
<td>SOIC</td>
<td>D</td>
<td>8</td>
<td>2500</td>
<td>340.5</td>
<td>338.1</td>
<td>20.6</td>
</tr>
<tr>
<td>TLV4113CDGQR</td>
<td>MSOP-PowerPAD</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>358.0</td>
<td>335.0</td>
<td>35.0</td>
</tr>
<tr>
<td>TLV4113IDGQR</td>
<td>MSOP-PowerPAD</td>
<td>DGQ</td>
<td>10</td>
<td>2500</td>
<td>358.0</td>
<td>335.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

All dimensions are nominal
NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0.15.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <http://www.ti.com>.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-187 variation BA-1.

PowerPAD is a trademark of Texas Instruments.
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

![Exposed Thermal Pad Dimensions](image)

NOTE:
A. All linear dimensions are in millimeters
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>. Publication IPC-7351 is recommended for alternate designs.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD™ is a trademark of Texas Instruments

www.ti.com
DGN (S-PDSO-8)

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com <http://www.ti.com>.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-187 variation AA-T.

PowerPAD is a trademark of Texas Instruments.
THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

![Exposed Thermal Pad Dimensions Diagram]

NOTE: All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com [http://www.ti.com].
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments
NOTES:

A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.
⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.

E. Reference JEDEC MS-012 variation AB.
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
NOTES:

A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

⚠️ Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0.15) each side.

⚠️ Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0.43) each side.

E. Reference JEDEC MS—012 variation AA.

4040047—3/M 06/11
NOTES:

A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible for or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
- www.ti.com/audio

Amplifiers
- amplifier.ti.com

Data Converters
- dataconverter.ti.com

DLP® Products
- www.dlp.com

DSP
- dsp.ti.com

Clocks and Timers
- www.ti.com/clocks

Interface
- interface.ti.com

Logic
- logic.ti.com

Power Mgmt
- power.ti.com

Microcontrollers
- microcontroller.ti.com

RFID
- www.ti-rfid.com

OMAP Applications Processors
- www.ti.com/omap

Wireless Connectivity
- www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
- www.ti.com/automotive

Communications and Telecom
- www.ti.com/communications

Computers and Peripherals
- www.ti.com/computers

Consumer Electronics
- www.ti.com/consumer-apps

Energy and Lighting
- www.ti.com/energy

Energy and Power
- www.ti.com/energy

Industrial
- www.ti.com/industrial

Medical
- www.ti.com/medical

Security
- www.ti.com/security

Space, Avionics and Defense
- www.ti.com/space-avionics-defense

Video and Imaging
- www.ti.com/video

Ti E2E Community
- e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated